基于高光谱图谱融合技术的宁夏滩羊肉嫩度检测方法研究
DOI:
CSTR:
作者:
作者单位:

(1.宁夏大学 土木与水利工程学院,宁夏 银川,750021; 2.宁夏大学 农学院,宁夏 银川 750021)

作者简介:

王松磊(1982-),男,河南人,博士研究生,主要从事农产 品无损检测方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年项目(31101306)和宁夏大学自然科学基金(ZR15033)资助项目 (1.宁夏大学 土木与水利工程学院,宁夏 银川,750021; 2.宁夏大学 农学院,宁夏 银川 750021)


Study on Tan-lamb mutton tenderness by using the fusion of hyperspectral spectr um and image information
Author:
Affiliation:

(1.Schlool of Construction and Hydraulic Engineering,Ningxia University,Yinch uan 750021,China; 2.School of Agriculture,Ningxia University,Yinchuan 750021,Ch ina)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用可见/近红外高光谱图谱融合技术对宁夏滩 羊肉嫩度检测进行研究。通过高光谱系统(400~1000nm)采集了128个滩羊肉图像,对原始光谱结合偏 最小二乘回归(PLSR)模型进行多种光谱预处理研究,优选出S-G卷积平滑预 处理方法,采用PLSR的加权β系数提取9个特征波长,对比分析 全波段与特征 波长下的PLSR模型;同时提取出与羊肉嫩度相关的4个图像特征参数,建立基 于图像特征的多元线性回归(MLR)模型;在此基础上,融合特征波长与表面脂肪分布图像特 征 参数建立了羊肉嫩度的PLSR模型。结果表明,采用单一光谱数据下S-G卷积平 滑预处理结合特征波长建立的PLSR模型取得了较好预测效果,基于图谱特征 变量融合的PLSR模型相比于单一光谱模型效果更佳,预测集的相关系数和预测 均方根误差(RMSEP)分别为0.89和0.73,表明本文提出的方法 进行羊肉嫩度定量检测是可行的。

    Abstract:

    A visible/near-infrared (400-1000nm) hyperspectral imaging technique is investigated for non-destructive determination of tendern ess composition of Tan-lamb mutton produced in Ningxia.The hyperspectral images of mutton over the spectral region between 400nm and 1000nm are acquired for 128mutton samples and the Savitzky-Gol ay (S-G) smoothing wavelength is selected.The 9important wavelengths are sele cted using weighted β-coefficients of partial least-squares (PLS) regression,and the models are then established usi ng these feature wavelengths related to the spectral information by PLS regress ion to predict moisture of jujube.At the same time,the multi-linear regression (MLR) model is established using 4feature parameters re lated to the image information.On the basis of these studies,a new partial least-squares regression (PLSR) model is establ ished by the fusion of spectrum and image feature information to predict mutton tenderness.The results show that the PLSR model of S-G smoothing wavelength is superior to the PLSR model of original spectrum,the PLSR model of the feature wavelengths is better than tha t of the all wavelengths,the PLSR model based on the fusion features of spectral and image information variables is superior to the PLSR model based on character istic variables of the single information,the correlation coefficient of prediction s et and the root mean square prediction error (RMSEP) are 0.89and 0.73,respectively.Therefore,the proposed method is feasible to predict quantitative detection of mutton tenderness,and provi des a theoretical basis for on-line detection of Ningxia′s Tan-lamb mutton quality in th e future.

    参考文献
    相似文献
    引证文献
引用本文

王松磊,吴龙国,康宁波,李宏燕,王家云,贺晓光.基于高光谱图谱融合技术的宁夏滩羊肉嫩度检测方法研究[J].光电子激光,2016,27(9):987~995

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-12-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-09-20
  • 出版日期:
文章二维码