基于稠密轨迹特征的红外人体行为识别
DOI:
CSTR:
作者:
作者单位:

(重庆大学 光电技术及系统教育部重点实验室,重庆 400044)

作者简介:

邵延华(1982-),男,河南周口人,博士研究生,主要从事计 算机视觉和模式识别方面的研究.

通讯作者:

中图分类号:

基金项目:

教育部重点科研项目(108174)、教育部博士点基金(20130191110021)资助项目 (重庆大学 光电技术及系统教育部重点实验室,重庆 400044)


Infrared human action recognition using dense trajectories-based feature
Author:
Affiliation:

(Key Laboratory of Optoelectronic Technology and System of Ministry of Education of China,Chongqing University, Chongqing 400044,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种使用基于稠密轨迹(DT)融合特征的红外 人体行为识别(HAR)方法。主要流程 如下:1) 通过稠密采样获得输入行为视频的DT;2) 计算DT的方向 梯度直方图 (HOG)、光流直方图 (HOF)和运动边界描述子(MBH)3个描述子;3) 基于DT的HOG 、HOF和 MBH,并采取词袋库模型和一定的融合策略,构建融合特征;4) 以第3步所构建的融合特 征为k近邻分类器(k-NN)的输入,完成人体HAR。实验以IAD B红外行为库为研究对象,正确识别率达到96.7%。结 果表明,提出的特征融合及识别方法能有效地对红外人体行为进行识别。

    Abstract:

    Human action recognition (HAR) in videos is a challenging problem in computer vision and pattern recognition with wide applications.Most works on HAR have been visible-spe ctrum oriented.However,this paper uses thermal infrared imaging for HAR.In order to overcome the deficien cy of single scale and individual representation method of action on HAR,a new recognition algorithm of human act ion using dense trajectories-based multi-feature fusion is presented.Our method consists of th e following steps:The dense trajectories (DTs) of the input action video are obtained by using dense samplin g ;Three dense trajectories-based descriptors are constructed,namely histogram of oriented gradient (HOG), histogram of optical flow (HOF) and motion boundary histograms (MBH);The fusion feature is constructed by u sing the popular bag-of-features (BoF) representation of HOG,HOF and MBH,respectively.And fr om the pattern recognition perspective,action recognition can commonly be viewed as a multiclass classific ation problem.Consequently,a k-NN classifier is employed to recognize the human acti on using the computed d ense trajectories-based fusion features.The intensive experimental results show that the proposed method can a chieve the correct recognition rate above 96.67% on the benchmark infrared action dataset of IADB.Interrelated analy ses conclude that the proposed algorithm is effective and promising for visible and infrared human action recognition.

    参考文献
    相似文献
    引证文献
引用本文

邵延华,郭永彩,高潮.基于稠密轨迹特征的红外人体行为识别[J].光电子激光,2015,26(4):758~763

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-25
  • 出版日期:
文章二维码