变采样率的磁共振图像分块压缩感知
DOI:
CSTR:
作者:
作者单位:

(1.宁波大学 信息科学与工程学院,宁波 315211; 2.重庆理工大学 计算机学院 重庆 400054)

作者简介:

金炜(1969-),男,浙江兰溪人,博士,副教授,主要从 事多尺度分析、压缩感知和数字图像处理的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61271399,61173184)、宁波市自然科学基金(2011A610192,3A610055)、宁波市科技创新团队研究计划(2011B81002)、宁波大学研究生教育改革重点项目(JGZD1201202)和宁波大学科研基金(XYL12003;XKXL1306)资助项目 (1.宁波大学 信息科学与工程学院,宁波 315211; 2.重庆理工大学 计算机学院重庆 400054)


Block-based compressed sensing for MR image with variable sampling rate
Author:
Affiliation:

(1.College of Information Science and Engineering,Ningbo University,Ningbo 315211,China; 2. College of Computer Science,Chongqing University of Technology,Chongqing 400054,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种磁共振(MR)图像的变采样率分块压缩感知(BCS,block-based compressed sensing)方法;根据MR图像细节丰富、纹理复杂的特点 ,引入对图像高 维奇异结构具有良好稀疏表示能力的Tetrolet变换,同时考虑到MR图像各切片间的时空相 关性,将相邻时序的MR切片组成图片组(GOP),通过计算参考图片与相邻切片的差异,并对 参考 图片及差异图进行不重叠分块,根据图像块内容变化的快慢自适应分配采样率,获取测量数 据,采用平滑投影Landweber(SPL,smooth projected Landweber)算法实现GOP的高质 量压缩感知(CS)重构。实验结果表明,Tetrolet 变换适用于MR图像的稀疏表示,相较于采用离散余弦变换(DCT)及双树小波变换(DWT)的方法 ,本文的重构图 像的PSNR平均提高了0.92dB与2.06dB;而且对于不同的GOP,采用变采样率方案时, 重构图像的质量均优于固定采样率时所得到的结果,为MR图像的CS提供了一种可行 的解决方案。

    Abstract:

    A block-based compressed sensing scheme for magnetic resonance (MR) i mage with variable sampling rate is proposed.In view of containing the rich details and c omplex texture of MR image,the Tetrolet transform,which can represent the high dimensional singul arity structure of image sparsely,is introduced.Meanwhile,the adjacent slices of the MR image are bound to constitute a group of pictures (GOP) considering the spatio-temporal correlatio n between contiguous slices,and the disparities of the reference slice with its immediate previous and following slices are calculated to form the difference images.Then,the referenc e slice and the difference images are partitioned into the no-overlapped blocks to assign sampl ing rate according to the changes of contents between sequential image blocks.Finally,GOP can be reconstructed from measurements by using the projected Landweber algorithm under the compresse d sensing framework.The experimental results show that the Tetrolet transform is a suita ble sparse representation tool for MR image.Compared with the methods using discrete cosin e transform and dual-tree wavelet transform,the PSNR of the reconstruct ed images is increased by 0.92 dB and 2.06dB,averagely.Moreover,for diverse GOPs,the qualities of the reconstructed i mages with variable sampling rate are all better than the results obtained from the fixed sampling rate method.This paper provides a feasible scheme for compressed sensing of MR images .

    参考文献
    相似文献
    引证文献
引用本文

金炜,王文龙,闫河.变采样率的磁共振图像分块压缩感知[J].光电子激光,2014,(12):2400~2406

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-08-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-08
  • 出版日期:
文章二维码