基于局部平滑加权图割方法的SAR图像分割
DOI:
CSTR:
作者:
作者单位:

作者简介:

赵伟(1987-),男,山东聊城人,博士研究生,主要 从事计算机视觉、模式识别和图像处理领域相关内容研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60972150、61201323、61301196)、陕西省自然科学基础研究计划(2014JQ5189)和遥感科学国家重点实验室开放基金(OFSLRSS201206)资助项目 (1.西北工业大学 应用数学系,陕西 西安 710072; 2.中国科学院遥感科学国家重点实验室,北京 100101)


SAR image segmentation using local smoothing weighted graph cut
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对合成孔径雷达(SAR)图像分割,提出了一种 局部平滑加权图割(LSWGC,local smoothing weighted graph cut)模型。首先,在加权图割(WGCut)的目标函数中加入局部平滑罚项,提高了基于谱 聚类的SAR 图像分割方法对斑点噪声的稳健性,抑制了SAR图像分割中孤立点的产生;其次,利用WGCut 与加权核 K均值(WKKM)的等价性,LSWGC以不同于参数核 图割(PKGC)方法的核化方式将核映射引入目标函数中,用图 割最优化算法求解标号函数,避免了基于谱聚类的SAR图像分割方法中图谱的求解问题,同 时改善了PKGC方法二类划分易丢失目标的不足。模拟和真实SAR图像的实验结果证实 了本文方案的有效性。

    Abstract:

    The segmentation of synthetic aperture radar (SAR) images is a challenging task. The difficulty lies in that the existence of speckle noise leads to the segmentation of small sets of isolated pixels.To solve this problem,a local smoothing weighted graph cut model is pre sented in this paper. Firstly,a smoothness regularization term is introduced into the weighted graph cut model.As a result,the robustness of the spectral clustering based SAR image segmentation methods to sp eckle noise is improved and small sets of isolated pixels are restrained.Secondly,using the e quivalence relation between the weighted graph cut model and weighted kernel K-means,kernel mappin g is added to the objective function of local smoothing weighted graph cut model with a different fashion from parametric kernel graph cuts,and the label function can be solved via graph cut optimizatio n algorithm.The method avoids calculating graph spectrum,which is a key step of spectral clustering ba sed SAR image segmentation methods.Meanwhile,it makes up for the deficiency of parametric ke rnel graph cuts method when the segmentation number is two.Experimental results with simulated a nd real-world SAR images demonstrate that the proposed method is effective and provides comparable or bet ter results than the classical graph cut based methods.

    参考文献
    相似文献
    引证文献
引用本文

赵伟,田铮,杨丽娟,延伟东.基于局部平滑加权图割方法的SAR图像分割[J].光电子激光,2014,(11):2212~2218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码