结合颜色和MGD特征及MRF模型的场景文本分割
DOI:
CSTR:
作者:
作者单位:

作者简介:

刘晓佩(1976-),女,陕西西安人,工学博士, 讲师,主要从事信息处理、图像分析与识别以及自然环境文字分析方面的研究工作.

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金(61302133)、陕西省工业攻关(2013K07-35);陕西省科技攻关计划(2012K06-16)和华为高校创新研究计划(IRP-2012-03-06)资助项目 (1.西安科技大学 通信与信息工程学院,陕西 西安 710054; 2.西安电子科技大学 通信工程学院 陕西 西安 710071)


Segmentation of scene text image using color and MGD feature and MRF model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对场景文本受到光照、复杂背景等因素影响而 难以进行有效分割的问题,提出了一种融合颜色和 最大梯度差(MGD,maximum gradient difference)特征及 马尔科夫随机场(MRF,Markov random field) 的场景文本分割方法。首先提取能够有效表达文本纹理特性的MGD特征,通过 概率框架将其和颜色特征 结合起来对观测图像进行建模;然后结合空间关系和邻域像素属性差异对传统势函数进行改 进;最后建立场景文本分割的MRF模型,利用图割(graph cut)算法快速地求 解该模型。实 验结果表明,采 用颜色和MGD特征相结合以及改进的势函数对分割结果具有较大地改善,尤其在光照不均匀 及背景复杂情况下相比其他算法取得了较好的性能。

    Abstract:

    An effective algorithm for segmentation of scene text based on color, maximum gradient difference (MGD),and Markov random field (MRF) model is proposed to overcome the interfere nce of uneven illumination and clutter background to scene text segmentation.Firstly,in view of the compl exity of scene text,the effective texture feature MGD is extracted,and is combined with color feature to make a model for observed image through a probability framework.Secondly,potential function is improved by tak ing advantage of the spatial relationship and attribute difference between neighborhood pixels.Then,an MRF m odel is proposed for the problem of scene text segmentation,and graph cut method is adopted to solve the model quickly under the criterion of minimum energy.Experimental results demonstrate that the proposed method performs well and can achieve better segmentation results compared with other methods,especially in c ase of uneven light and complex background.

    参考文献
    相似文献
    引证文献
引用本文

刘晓佩,卢朝阳,李静,姜维.结合颜色和MGD特征及MRF模型的场景文本分割[J].光电子激光,2014,(9):1824~1829

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码