基于高斯曲面特征矩阵的扩展目标形状估计
DOI:
CSTR:
作者:
作者单位:

作者简介:

杨金龙(1981-),男,江苏连云港人,博士, 副教授,硕士生导师,主要研究方向为目标跟踪、信号处理和模式识别等.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61305017,61304264)、江苏省自然科学基金(BK20130154)和江苏省研究 生培养创新基金(KYLX_1125)资助项目 (江南大学 物联网工程学院,江苏 无锡 214122)


Shape estimation of extended targets based on Gaussian surface feature matrix
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统方法难以准确估计扩展目标形状的问题 ,提出一种新的基于高斯曲面拟 合的量测模型和基于高斯曲面特征矩阵的形状估计算法。首先,建立能反映目标真实形状的 结构点,并产生多个高斯曲面,通过曲面叠加形成任意形状的量测空间分布模型;然后,根 据高斯曲面拟合原理,用矩阵表示该拟合曲面主要区域的分布特征,并通过映射方程建立矩 阵坐标与笛卡尔坐标的映射关系;最后,通过贝叶斯滤波体系更新拟合矩阵。与现有算法相 比,本文算法不需要准确预设目标形状,在量测噪声较大的环境下,可以自适应的拟 合目 标真实形状。并且,在不需要预设目标形状方程的情况下,可以估计包括空心形状在内的任 意不规则目标形状。实验结果表明,在目标初始形状参数不准确的情况下,本文算法正确估 计了飞机形状、空心形状和集群目标形状,并且具有较好的扩展目标形状估计性 能和较强的鲁棒性。

    Abstract:

    Taking account of the difficulty of shape estimation for the extende d targets,a new measurement model and a shape estimation approach based on Gaussian surface feature matrix are proposed in this paper.First,the structural points are establiched,wh ich are able to reflect the true shape of the extend target,and these points are used to construct some Gaus sian s urfaces.Then these Gaussian surfaces are fitted to yield the suitable measuremen t spatial distribution models. Furthermore,the feature of measurement spatial distribution is described by usin g a matrix with Gaussian surface fitting approach,and a mapping relationship between the matrix coordinates and the Cartesian coordinates is established by a suitable mapping f unction.Finally,the Gaussian surface feature matrix is updated by Bayesian filtering method.Compared with the conventional algorithms,the proposed algorithm can estimate the true shape of extended targe t in the high-noisy environment,even the preset shape is inaccurate.Moreover,it can b e used to estimate any irregular shape,even the hollow shapes,without knowing the preset shape i nformation. Simulation results show that the plane shapes,hollow shapes and group targets a re estimated accurately in case of the preset shape parameters are inaccurate,which demonstr ates that the proposed algorithm has good performance for shape estimation of any extended t arget with a strong robustness.

    参考文献
    相似文献
    引证文献
引用本文

李鹏,杨金龙,葛洪伟.基于高斯曲面特征矩阵的扩展目标形状估计[J].光电子激光,2014,(9):1803~1811

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-02-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码