遗传算法优化BP神经网络的大功率LED结温预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

王志斌(1977-),男,河北省石家庄 市行唐县人,博士,副教授,从事智能仪器仪表、大功率LED及其应用技术的 研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61107039)和河北省自然科学基金(F2012203202)资助项目 (燕山大学 电气工程学院,河北 秦皇岛 066004)


Prediction of junction temperature for high power LED by optimizing BP neural n etwork based on genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将遗传算法(GA)与BP神经网络相结合,对研发的 120W LED双进双出的射流冲击水冷散热系统中 LED阵列的结温进行预测。采用GA优化BP网络的权值和阈值,利用BP算法训练网络 ,改善了单独使用BP网络容易 陷入局部极小值和收敛速度慢的缺点。并且在训练过程中为了使网络输出有足够长的空间, 改进了GA的数据处理。结果表明,经GA优化的BP神经网络较使用Levenberg-Marquardt(LM) 算法优化的BP神经网络的大功率LED结温预测 精确度提高了14.14%,且预测效果较稳定。GA和BP神经网络相结合的 结温预测模型较传统的结温测量方法更能 掌握散热结构设计的主动性,对大功率LED寿命的延长有较高的实用价值。

    Abstract:

    In this paper,the junction temperature of high-power LED array of th e LED 120W double inlet and outlet jet impingement water cooling system developed by the research group is predicted by combining t he genetic algorithm (GA) with BP neural network. Taking advantage of genetic algorithm to optimize the weights and threshold of B P network and BP algorithm for training the network can reduce the shortcomings of local minimum value and slow convergence spe ed of using BP network alone.And in the training process,in order to make the network output have space a long enough on ge netic algorithms for data processing,we make some improvements to the original data normalized to [0.050.95].The collected data is studied,trained and forecast by the model and the results show that the model can reflect the junction temperature of LED better.T he prediction accuracy is improved by 14.14% using the GA-optimized BP neural n etwork than that using the LM-optimized BP neural network.and the predicted effect is more stable.The junction temperature prediction model o f the BP neural network combined with genetic algorithm is more able to grasp the initiative of the heat dissipation structure design than the traditional measurement,and it has high practical value to extend the life of the high power LED.

    参考文献
    相似文献
    引证文献
引用本文

王志斌,孔亚楠,刘永成,张骞.遗传算法优化BP神经网络的大功率LED结温预测[J].光电子激光,2014,(7):1310~1314

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码