膝骨性关节炎的在体近红外光谱检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

陈延平(1974-),男,福建莆田人,副教授, 主要从事生物医学传感与检测、生物医学仪器、生物医学光子学和生物医学电子学研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61172046)和福建省自然科学基金(2011J01363)资助项目 (厦门大学 机电工程系,福建 厦门 361005)


Detection of knee osteoarthritis with near infrared spectroscopy in vivo
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据关节软骨中水含量的变化,用近红外(NIR)光 谱法在体无创检测膝骨性关节炎(KOA)。阐述了基于朗伯 比尔定律的NIR光谱法检测KOA的原理。以6month的成年家兔为实验对象, 用Videman法获 得KOA模型,多次采集正常兔膝和KOA兔膝的光谱,提取不同时间段所获 得的光谱信息,计 算得出了不同波长光强与828nm光强的比值,最后用线性拟合方法分 析KOA兔膝的光谱信息。和正 常膝关节相比,KOA膝关节的NIR吸收光谱增加,在983nm和995nm波长处变化明显。NIR光谱 法在体无创检测KOA是可行的。本文的研究结果为NIR光谱法用于人KOA的临床 检测提供了理论依据。

    Abstract:

    The knee osteoarthritis (KOA) is detected noninvasively and in vivo with nea r infrared spectroscopy on the basis of the change of water content in articular cartilage.The principl e based on Lambert-Beer′s law is stated in this paper.6-month rabbits are used and KOA models are obtained with Videman method.The spectra s of normal knees and OA ones at different time are collected and extracted.The ratios o f light intensities of different wavelengths to 828nm are calculated and compared.Spectral informati on of OA knees is analyzed with linear fitting method finally.Slopes of fitting lines of OA knees at different wavelengths are compared.Spectra of source,normal knees and OA knees are p lotted according to the original spectral data.Compared with normal ones,the near infrared abs orption spectra of OA knees increase.The changes are obvious at 983nm and 995nm.It’s feasible to use near infrared spectroscopy to detect KOA noninvasively and in vivo.The result provides theory basis of near infrared spectroscopy for the clinical detection of human KOA in the future.

    参考文献
    相似文献
    引证文献
引用本文

陈延平,李纯彬,王晓玲,储茜雯,龙朱蒂.膝骨性关节炎的在体近红外光谱检测[J].光电子激光,2014,(5):1023~1026

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-10-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码