复杂环境下基于多特征决策融合的眼睛状态识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

秦华标(1967-),男,湖南张家界人,博士,教授 ,主要从事计算机视觉、无线通信网络、嵌入式系统和FPGA设计的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60972136)和广东省科技计划(2010B010600014)资助项目 (华南理工大学 电子与信息学院,广东 广州 510640)


Eye state recognition in complex environment based on multi feature decision fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对常用图像特征容易受到复杂光照、头部 运动等因素的影响导致眼状态识别算法的准确率 降低的问题,本文在对多种红外条件下眼睛图像特征进行分析研究的基础上,选择具有旋转 不变性和尺度 不变性但对光照敏感的伪Zernike矩特征、简单并有效但对轮廓提取有较高要求的复杂度特 征和对光照不敏 感但容易受到头部运动影响的HOG特征作为眼状态识别的特征,提出了一种基 于多特征决 策融合的眼状态识别算法。首先建立上述3种特征相应的支持向量机(SVM)分 类器,然后利用自动权值学 习算法得到 3个特征分类器的决策权重,最后综合利用不同特征的性能特点对3个分类器的识别结果 进行决策融合 从而得到最终识别结果,提高了眼状态识别算法的鲁棒性。实验结果表明,本文算法能够较 好克服光照和头部运动对眼睛状态识别的影响,识别准确率达到91.9%。

    Abstract:

    The normal image features are easily impacted by factors,such as varia nt illumination,head motion and wearing glasses,which lead to the low accuracy in various eye state recognition algorithms. To improve recognition accuracy,various infrared eye image features are analyz ed in this paper and the following features are found to be propitious when used in eye state classi fiers:the pseudo-zernike feature is invariant for rotation and scale changing but sensiti ve to variant illumination;the complexity feature is simple and effective but re quires a high-precision contour extraction;the HOG feature is robust to variant illumination but cannot tolerat e a wide range of head motion.Based on these analyses,an eye state recognition algorithm based on mul ti-feature decision fusion is proposed.Firstly,corresponding optimal support vector machine (SVM) mo dels for these three features are built; then weights for decision of three classifiers are calculated through the autom atic weight learning algorithm;lastly,the final recognition results are obtained through th e decision fusion of three classifiers′ recognition results.The robustness of eye state recognition algor ithm is improved by combining the performance characteristics of different features.Experimental res ults show that the accuracy of eye state recognition algorithm can achieve 91.9% in this paper,whi ch overcomes the impacts of variant illumination and head motion.

    参考文献
    相似文献
    引证文献
引用本文

秦华标,李雪梅,仝锡民,黄宇驹.复杂环境下基于多特征决策融合的眼睛状态识别[J].光电子激光,2014,(4):777~783

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-08-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码