一种仿水下生物视觉的大坝裂缝图像增强算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

范新南(1965-),男,江苏宜兴人,博士,教 授,博士生导师,研究方向为信息获取与信息处理、智能图像处理 .

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61273170)和高等学校博士学科点专项科研基金(20120094120023)资助项目 (河海大学 江苏省输配电装备技术重点实验室,江苏 常州 213022)


A dam crack image enhancement algorithm based on underwater biological vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下大坝裂缝图像非均匀亮度、低信噪比(SNR)和低对比度等特点,提出了一种仿水下生物视觉 的大坝裂缝图像增强算法。算法借鉴生物视觉亮度调节特性改善裂缝图像的亮度非均匀问 题,并在模拟 水下生物“鲎鱼”视觉的侧抑制增强机制机理的基础上,引入自适应的非对称窄条引导模型 ,对裂缝图像 中的线性特征进行增强。理论和实验结果表明,本文算法能够在有效抑制噪声的同时 ,对图像线性特征增强。

    Abstract:

    In view of the characteristics such as non-uniform brightness,low s ignal to noise ratio as well as the low contrast of the underwater dam crack image,this paper brings up a novel dam crack image enhancement algorithm,which adopts the simulation of underwater biological vision.With ref erence to the brightness adjustment characteristics of the biological vision,this algorithm also improve s the non-uniform brightness of underwater dam crack image.Furthermore,in order to improve the low signal-to -noise ratio and solve the problem of low contrast of dam crack image,on the basis of lateral inhibition enhancement mechanism of the "horseshoe crab fish",we introduce the adaptive asymmetric narrow strip guidance models,w hich can help to enhance the linear characteristics of the crack image.The theoretical and the experimental results got from this paper show that the proposed algorithm can significantly eliminate the noises of the underw ater image,and also better improve the definition of the image from the physical standpoint.And at the sam e time,by strengthening the edges of crack image and enhancing the subtle liner structures of interest in th e crack image,this algorithm improves the contrast of the interesting areas,whic h is of great significance for the subsequent crack feature extraction.

    参考文献
    相似文献
    引证文献
引用本文

范新南,顾丽萍,巫鹏,张卓,张学武,史朋飞.一种仿水下生物视觉的大坝裂缝图像增强算法[J].光电子激光,2014,(2):372~377

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码