基于全局纹理和抽样推断的自适应阴影检测算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Adaptive shadow detection based on global texture and sampling deduction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高不同光线环境下阴影检测的准确度和稳定性,提出了一种自适应的阴影检测算法。设计了一种阴影检测器,利用候选前景中像素YUV分量变化比率判别阴影像素,其检测阈值由阈值估计器得到。阈值估计器利用全局纹理和抽样推断的方法统计计算出当前光线环境下所需的阈值。整个阴影检测过程不需要人工干预,适应于各种复杂动态的场景。对代表不同光线条件的标准测试视频的检测实验表明,本文算法能够自适应地检测得到各目标阴影区域,具有较好的稳定性和实时性,综合检测指标达到94%以上。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

姜柯,李艾华,苏延召.基于全局纹理和抽样推断的自适应阴影检测算法[J].光电子激光,2012,(11):2174~2179

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码