直接正交鉴别保局投影算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(60975009);安徽理工大学青年教师科学研究基金资助项目


Direct orthogonal discriminant locality preserving projections method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对保局投影(LPP)及其衍生出的算法在人脸识别时须先采用主成分分析(PCA)算法对高维样本降维后才能应用,本文基于正交鉴别保局投影(ODLPP,orthogonal discriminal locality pre-serving projection)算法,提出了一种直接ODLPP(DODLPP)算法,利用拉普拉斯矩阵性质进行了相应的矩阵分解,可直接从高维样本的原始空间中提取投影矩阵。为解决ODLPP算法的小样本问题,给出先求解局部类内散度矩阵的零空间,然后再最大化类间散度矩阵的求解思路。人脸库上的实验结果表明所提算法的有效性。

    Abstract:

    A series of feature extraction algorithms based on locality preserving projection have been proposed.PCA algorithm must be firstly used for high-dimensional samples when these algorithms are applied in face recognition.Therefore,by using the orthogonal discriminant locality preserving projection algorithm,a direct orthogonal discriminant locality preserving projection algorithm is proposed.Through the corresponding matrix decomposition according to the properties of the Laplacian matrix,the projection matrix can be directly extracted from the original high-dimensional space without using PCA algorithm as the first step.In order to solve the small sample size problem,the null space of the local within-class scatter matrix is obtained and the between-class scatter matrix is maximized.Experimental results on face database demonstrate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

林玉娥,李敬兆,梁兴柱,林玉荣.直接正交鉴别保局投影算法[J].光电子激光,2012,(3):561~565

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码