基于梯度信息的C-V模型图像分割算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金资助项目(60672128)


Image segmentation method of C-V model based on bradient information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的C-V模型对于含有多灰度级目标的图像难以准确分割并且分割速度缓慢等问题,提出了在C-V模型中引入梯度信息的图像分割算法。该算法在C-V模型的偏微分方程中加入了基于梯度信息的加速因子和弱目标边界控制力,加速因子的引入可以显著地提高C-V模型的分割速度,弱目标边界控制力可以有效地防止弱目标边界泄漏和漏分割。实验结果表明:该算法能够有效分割出弱目标和提高图像分割速度。

    Abstract:

    The traditional C-V model can not accurately segment an image including multi-gray level objects and the segmentation speed is slow.In order to solve the problems,an image segmentation algorithm based on C-V model and gradient information is proposed.The algorithm introduces a speedup item and a weak object boundary control force in the partial differential equation of C-V model.The speedup item can effectively improve the segmentation speed,and the weak object boundary control force can avoid the weak obje...

    参考文献
    相似文献
    引证文献
引用本文

刘建磊.基于梯度信息的C-V模型图像分割算法[J].光电子激光,2010,(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码