一种基于距离相似性度量和HMMs的字符识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目


Character Recognition by Distance-Based Similarity and HMMs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够综合利用隐马尔可夫模型(HMMs)分类器在分类过程中能够得到的多种信息,提出一种基于距离相似性度量对HMMs后验概率进行调整的方法,将样本相似性与HMMs后验概率有机地结合起来进行识别.在分类过程中,采用距离相似性度量来描述待识别样本与模式类标准样本间的相似性,然后采用归一化距离相似性度量对后验概率进行适当调整,最后用调整后的概率进行分类.实验结果表明:与标准的HMMs识别方法相比,改进后的方法能够在计算量增加很小的情况下,较好地改善系统的识别精度;系统性能的改善效率在1.1~6.5间.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

王先梅,王宏,颉斌.一种基于距离相似性度量和HMMs的字符识别方法[J].光电子激光,2008,(8):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码