基于Radon逆变换分解的超短扫描锥束重建
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

辽宁省高等学校科研项目


Cone-Beam Reconstructioin Based on the Decomposition of Radon Inversion Transform for the Super-Short-Scan Trajectory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在3-D Radon逆变换的分解的基础上,推导出一种属于后偏导类型的锥束重建算法.与原类型算法相比,该算法由于引进了关于锥向变量偏导数的相关运算,而获得了与前偏导类型算法相近的重建结果.利用转角纠正因子对重建公式进行修正,从而进一步扩大了锥向重建范围.采用3-D Shapp-Logan头模型进行了计算机模拟,实验结果验证了算法的有效性.

    Abstract:

    According to the order difference between the Hilbert transform and the partial derivative, reconstruction algorithms for cone-beam projections along the circular super-short-scan trajectory can be categorized into two classes, named FPD and BPD algorithms. They are theoretically equivalent. However compared with the former,the later has smaller reconstruction range. Based on the decomposition of 3D Radon inversion transform,this paper derives a new reconstruction formula which belongs the BPD algorithms. Unlike the original method,an approximate reconstruction result as the FPD method is obtained by introducing the partial derivate with respect to the variable of cone direction. In addition,the Radon data which are not offered in the circular trajectory are compensated by the correction factor of rotation angle. The simulation experiment shows that the proposed algorithms effidently avoid the problem in the BPD algorithms and obtained better reconstruction results.

    参考文献
    相似文献
    引证文献
引用本文

王瑜,欧宗瑛,王峰.基于Radon逆变换分解的超短扫描锥束重建[J].光电子激光,2007,(5):612~616

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-06-20
  • 最后修改日期:2006-09-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码