基于RBFNN和非全字符输入的车牌识别方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金 , 青岛大学校科研和教改项目


A Mobile Sign Recognition Based on Hybrid Structure Optimization Algorithm and Non-entire Character Input
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用径向基神经网络(RBFNN)识别车牌,RBFNN的算法采用混合结构优化算法,在识别中使用非全字符输入和多层识别器。混合结构优化算法减小了RBFNN的结构,提高了RBFNN的泛化能力;非全字符减少了RBFNN的输入,提高了车牌识别的速度;多层识别器保证了非全字符输入的识别率。将RBFNN的混合结构算法和非全字符输入、多层识别器相结合,在保证识别率的基础上,提高了识别速度。仿真试验表明:相对于全字符输入的车牌识别,本方法在时间复杂度上有很大优势;相对于K-means算法的RBFNN车牌识别,本方法在泛化能力上有一定的优势。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

赵志刚,缪凯,吕慧显.基于RBFNN和非全字符输入的车牌识别方法[J].光电子激光,2007,(12):1457~1461

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2006-11-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码