面向光纤布拉格光栅温度传感的高斯过程回归精度研究
DOI:
CSTR:
作者:
作者单位:

天津工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

天津市企业科技特派员项目(18JCTPJC63900)


Gaussian process regression accuracy study for fiber Bragg grating temperature sensing
Author:
Affiliation:

Tiangong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光纤布拉格光栅传感器在低温区间(-20 ℃~15 ℃)灵敏度不足、非线性响应显著,以及传统算法在室温至中高温区间(15 ℃~85 ℃)精度略差的问题,本文以高斯过程回归算法,作为处理FBG温度信号数据的核心算法。最终实验表明:在复合增敏方案作为前提下,GPR算法在低温小样本条件下平均绝对误差为0.05 ℃~0.14 ℃,较线性回归(0.15 ℃~0.31 ℃)和多项式回归(0.04 ℃~0.17 ℃)具有显著优势,同时在室温以上温区保持0.03 ℃~0.37 ℃的精度优势。此外,GPR通过95%置信区间(如-20 ℃时±0.15 ℃)量化数据不确定性,验证了方案在宽温域(-20 ℃~85 ℃)复杂环境下的适应性。本研究为低温监测与工业温控场景提供了高灵敏、高可靠的FBG传感技术新路径。

    Abstract:

    Aiming at the problems of insufficient sensitivity and significant nonlinear response of fiber Bragg grating sensors in the low-temperature interval (-20 ℃~15 ℃) and the slightly poor accuracy of the traditional algorithm in the room-temperature to medium-high-temperature interval (15 ℃~85 ℃), this paper takes the Gaussian process regression algorithm as the core algorithm to process the FBG temperature signal data. The final experiment shows that: under the composite sensitization scheme as the premise, the GPR algorithm has an average absolute error of 0.05 ℃~0.14 ℃ under the condition of small samples at low temperatures, which is a significant advantage over the linear regression (0.15 ℃~0.31 ℃) and polynomial regression (0.04 ℃~0.17 ℃), and meanwhile maintains the accuracy advantage of 0.03 ℃~0.37 ℃ in the temperature zone above room temperature. In addition, GPR quantifies the data uncertainty by 95% confidence interval (e.g., ±0.15 ℃ at -20 ℃), which verifies the adaptability of the scheme in complex environments over a wide temperature range (-20 ℃~85 ℃). This study provides a new path of highly sensitive and reliable FBG sensing technology for cryogenic monitoring and industrial temperature control scenarios.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-21
  • 最后修改日期:2025-08-10
  • 录用日期:2025-08-13
  • 在线发布日期:
  • 出版日期:
文章二维码