张亚加,邱啟蒙,刘恒,邵建龙.结合潜在低秩分解和稀疏表示的脑部图像融合[J].光电子激光,2023,(11):1225~1232 |
结合潜在低秩分解和稀疏表示的脑部图像融合 |
Brain image fusion combining latent low-rank decomposition and sparse representation |
投稿时间:2022-05-21 修订日期:2022-10-17 |
DOI: |
中文关键词: 潜在低秩分解 多范数加权度量 脑部图像 稀疏表示(SR) 融合指标 |
英文关键词:latent low-rank decomposition multiple-norm weighted metric brain images sparse representation (SR) fusion indicators |
基金项目:国家自然科学基金(61302042)和昆明理工大学教育技术研究项目(2506100219)资助项目 |
|
摘要点击次数: 82 |
全文下载次数: 0 |
中文摘要: |
针对低秩分解和稀疏表示(space representation,SR) 造成融合图像信息缺失的问题,提出一种结合潜在低秩分解和SR的脑部图像融合算法。首先,将源图像分解为低秩、稀疏和噪声3种成分,面对不同分解成分特性间的差异,分别构造低秩字典和稀疏字典进行描述:采用加权灰度值的方法处理低秩成分,以保持其轮廓和亮度特征;对于稀疏成分,设计一种多范数加权度量的方法对SR进行改进,以保持其高维信息,剔除噪声成分。比对当前主流的5种算法,在视觉效果和客观指标上,本文方法效果最优。 |
英文摘要: |
In order to solve the problem that the fusion algorithm of low-rank decomposition and sparse representation (SR) causes a lot of information missing,a brain image fusion algorithm combining latent low-rank decomposition and SR is proposed.Firstly,the source image is decomposed into low-rank,sparse and noisy components.In the face of the differences between the characteristics of different decomposition components,the low-rank and sparse dictionaries are constructed to describe the low-rank components respectively.The weighted gray value method is used to process low-rank components to maintain their contour and brightness features. For the sparse components,a multi-norm weighted metric method is designed to improve the SR to maintain the high-dimensional information.The noise components are eliminated.Compared with the current five mainstream algorithms,the proposed method has the best effect in terms of visual effects and objective indicators. |
查看全文 下载PDF阅读器 |
关闭 |
|
|
|
|
|